2inch LCD Module

Instruction

This is a general LCD display Module, IPS screen, 2inch diagonal, 240×320 resolution, with embedded controller, communicating via SPI interface

Feature

SPI interface, requires minimum GPIO for controlling Comes with development resources and manual

Specifications

Driver: ST7789 Interface: SPI Display color: RGB, 262K color Resolution: 240×320 Backlight: LED Operating voltage: 3.3V

Interface

SYMBOL	Description
VCC	Power (3.3V input)
GND	Ground
DIN	SPI data input
CLK	SPI clock input
CS	Chip selection, low active
DC	Data/Command selection (high for data, low for command)
RST	Reset, low active
BL	Backlight

Hardware description

ST7789V supports RGB444, RGB565 and RGB666 three formats. This LCD uses RGB565. For most of the LCD controller, there are several interfaces for choosing, this module we use SPI interface which is fast and simple.

Communication protocol

Note: It is not like the tradition SPI protocol, it only uses MOSI to send data from master to slave for LCD display. For details please refer to Datasheet Page 105.

RESX: Reset, should be pull-down when power on, set to 1 other time.

CSX: Slave chip select. The chip is enabled only CS is set Low

D/CX: Data/Command selection; DC=0, write command; DC=1, write data

SDA: Data transmitted. (RGB data)

SCL: SPI clock

The SPI communication protocol of the data transmission uses control bits: clock phase (CPHA) and clock polarity (CPOL):

CPOL defines the level while the synchronization clock is idle. If CPOL=0, then it is LOW.

CPHA defines at which clock's tick the data transmission starts. CPHL=0 - at the first one, otherwise at the second one

This combination of two bits provides 4 modes of SPI data transmission. The commonly used is SPI0 mode, i.e. GPHL=0 and CPOL=0.

According to the figure above, data transmitting begins at the first falling edge, 8bit data are transmitted at one clock cycle. It is SPI0. MSB.

Raspberry Pi examples

For Raspberry Pi we provide examples based on C and python

Enable SPI

Open terminal and run commands to enable SPI interface

sudo raspi-config

Choose Interfacing Options -> SPI -> Yes

Then reboot Raspberry Pi

Libraries installation

• BCM2835

wget http://www.airspayce.com/mikem/bcm2835/bcm2835-1.60.tar.gz tar zxvf bcm2835-1.60.tar.gz cd bcm2835-1.60/ sudo ./configure sudo make sudo make sudo make check sudo make install

• WiringPi

'sudo apt-get install wiringpi cd /tmp wget https://project-downloads.drogon.net/wiringpi-latest.deb sudo dpkg -i wiringpi-latest.deb gpio -y

• Python2 sudo apt-get updata sudo apt-get install python-pip sudo pip install RPi.GPIO sudo pip install spidev sudo apt-get install python-imaging

• Python3 sudo apt-get update sudo apt-get install python3-pip sudo pip3 install RPI.GPIO sudo pip3 install spidev sudo apt-get install python3-imaging

Hardware connection

Please notice, that wires colors may vary. Use pins designations for

2inch LCD	Board number	BCM number
VCC	3.3V	3.3V
GND	GND	GND
DIN	19	MOSI
CLK	23	SCLK
CS	24	CE0
DC	22	P25
RST	13	P27
BL	12	P18

wiring.

Download examples

Open terminal and download examples

```
'sudo apt-get install p7zip-full'
wget http://www.waveshare.net/w/upload/1/19/2inch LCD Module code.7z
7z x 2inch LCD Module code.7z -r -o./2inch LCD Module code
```

```
sudo chmod 777 -R 2inch_LCD_Module_code
cd 2inch_LCD_Module_code/RaspberryPi\&JetsonNano/
```

Test examples

```
• C codes
```

```
• Python codes
```

```
cd python/examples
```

Expected result

- 1. The display is cleaned to white
- 2. Display numbers and strings
- 3. Draw a rectangle
- 4. Draw a line
- 5. Draw five circles
- 6. Display a 100x100 image
- 7. display a 240x320 image

STM32 examples

- Download the demo codes from Waveshare wiki, the path of STM32 codes is ~/STM32/
- Open the project from \XNUCLEO-F103RB\MDK-ARM\ with Keil software. Note that the codes are based on HAL libraries.
- The development board we use is WaveshareXNUCLEO-F103RB

Hardware connection

2inch LCD	XNUCLEO-F103RB
VCC	5V
GND	GND

DIN	PA7
CLK	PA5
CS	PB6
DC	PA8
RST	PA9
BL	PC7

Expected result

- 1. The display is cleaned to white
- 2. Display numbers and strings
- 3. Draw a rectangle
- 4. Draw a line
- 5. Draw five circles
- 6. Display a 70x70 image

Arduino

- Download examples from wiki. Unzip it. The path of Arduino examples is ~/Arduino UNO/...
- Copyt the folders in Arduino directory to 【Installation directory】/libraries/ (Generally the installation directory is C:\Program Files (x86)\Arduino\libraries)
- Open Arduino IDE software, and click File -> Examples to check if LCD_2inch codes are there.
- The development board used is Arduino UNO.

Hardware connection

2inch LCD	UNO PLUS
VCC	5V
GND	GND
DIN	D11
CLK	D12
CS	D10
DC	D7
RST	D8
BL	D9

Expected result

- 1. The display is cleaned to white
- 2. Display numbers and strings
- 3. Draw a rectangle
- 4. Draw a line
- 5. Draw five circles
- 6. Display a 70x70 image